Anti microbial corrosion properties of electrospun cellulose acetate nanofibers containing biogenic silver nanoparticles for copper coatings


Creative Commons License

San Keskin N. O., Deniz F., NAZIR H.

RSC Advances, cilt.10, sa.65, ss.39901-39908, 2020 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 10 Sayı: 65
  • Basım Tarihi: 2020
  • Doi Numarası: 10.1039/d0ra07641d
  • Dergi Adı: RSC Advances
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Biotechnology Research Abstracts, Chemical Abstracts Core, Compendex, Metadex, Directory of Open Access Journals
  • Sayfa Sayıları: ss.39901-39908
  • Ankara Hacı Bayram Veli Üniversitesi Adresli: Evet

Özet

© The Royal Society of Chemistry.Nanofibers with inorganic nanoparticles are novel hybrid nanocomposites that have great potential in various areas. In the present study, cellulose acetate nanofibers (CA-Nf) loaded with biogenic silver nanoparticles were prepared and characterized. In situ synthesis of silver nanoparticles was accomplished using a bacteria free solution as a reducing agent. Nanofibers incorporated with silver nanoparticles were fabricated using the electrospinning technique. Upright microscopy and SEM micrographs depicted that the CA-Nf coatings consist of dense and compact entangled nanofibers that completely cover the copper surface. Corrosion measurements were performed by potentiodynamic polarization measurements and electrochemical impedance spectroscopy (EIS) techniques on the bare copper and CA-Nf and CA-Nf_5% AgNp coated copper surfaces in artificial seawater (ASW) and Escherichia coli ATCC 13883 inoculated solutions. Weight loss and electrochemical corrosion test results revealed that the CA-Nf-coated copper had greater corrosion resistance than bare copper. The additional electrospun CA-Nf_5% AgNp coating also had greater antibacterial behavior toward model biofilm bacterium Pseudomonas aeruginosa than uncoated copper specimens. Therefore, this nanofiber with AgNps was demonstrated as an efficient anticorrosive material in both corrosive and biocorrosive marine solutions.