Indian Journal of Physics, vol.97, no.10, pp.2903-2908, 2023 (SCI-Expanded)
In this study, the 59.98Cu–23.37Zn–13.73Al–2.92Mn (at.%) alloy was used. Phase identification was performed with the scanning electron microscope (SEM) and energy-dispersive X-ray (EDS). The magnetic characterization of the alloy was determined by physical property measurement system (PPMS) instrument. We have observed the austenite phase in CuZnAlMn (at.%) alloy. To produce a new Schottky diode, CuZnAlMn alloy was exploited as a Schottky contact on a p-type semiconductor silicon substrate. To calculate the characteristics of the produced diode, current–voltage (I–V), capacitance–voltage (C–V) and conductance–voltage (G–V) analyses were taken at room temperature (300 K), in the dark and under various lights. Using electrical measurements, the diode's ideality factor (n), barrier height (Φb) and other diode parameters were calculated. Besides, the conductance/capacitance–voltage (G/C–V) characteristics of the diode were studied in a wide frequency interval at room temperature. Also, the capacitance and conductance values strongly rely on the frequency. From the present experimental results, the obtained diode can be used for optoelectronic devices.